

The Evil that is Rooting

Michael Creutz
Brookhaven National Laboratory

Are rooted staggered quarks a sensible approach to lattice QCD?

Disagreement boils down to:

"ugly"

or

"absurd"

Outline

- review chiral behavior of 3 flavor QCD
- what rooted staggered quarks get wrong
- what are rooted staggered quarks
- why they get it wrong
- advocated escape: lots of wrong things might all cancel out
 - non-unitary, non-local, unproven

Three flavor QCD

- up, down, strange quarks
- fields ψ^u, ψ^d, ψ^s
- masses m_u, m_d, m_s

Arguments based on analyticity in the mass parameters

rooting introduces singularities where none expected

Theory has a quark condensate $\langle \overline{\psi}\psi \rangle \neq 0$

$$\bullet \quad \langle \overline{\psi}_L^{\ a} \psi_R^b \rangle = v \ \Sigma^{ab}$$

a, b "flavor" indices

- $\Sigma \in SU(3)$
- $SU(3) \times SU(3)$ chiral symmetry
 - $\Sigma \to g_L \Sigma g_R^{\dagger}$ $g_L, g_R \in SU(3)$

Non-perturbative

Jeff Stevens

Pseudoscalar mesons are small fluctuations about the condensate

• $\Sigma \sim \Sigma_0 e^{i\lambda \cdot \pi(x)/f_{\pi}}$

Low energy physics modeled by effective Lagrangian

•
$$L = \frac{f_{\pi}^2}{4} \text{Tr}(\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma) - v \text{ Re Tr}(\Sigma M)$$

$$\bullet \ \ \mathsf{mass} \ \mathsf{matrix} \ M = \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix}$$

- explicitly breaks $SU(3) \times SU(3)$ symmetry
- selects physical vacuum Σ_0
- Goldstone boson masses $M_\pi^2 \sim m_q$

Vacuum Σ_0 maximizes $\operatorname{Re} \operatorname{Tr} M\Sigma$

- for real masses this is
 - sometimes unique; Σ_0 real
 - sometimes doubly degenerate
 - $M \propto -I$ \Rightarrow $\Sigma_0 = e^{\pm 2\pi i/3}$

10,000 random SU(3) matrices

- complex vacuum signals spontaneous CP violation
 - $\langle \pi_0 \rangle \neq 0$

When I'm working on a problem, I never think about beauty. I think only how to solve the problem. But when I have finished, if the solution is not beautiful, I know it is wrong. -- R. Buckminster Fuller 7

Fix $m_s > 0$, vary m_u and m_d

Phase boundaries at $m_u m_d \pm m_u m_s \pm m_d m_s = 0$

• where π_0 mass vanishes

Optimism, n. The doctrine or belief that everything is beautiful, including what is ugly. -- Ambrose Bierce, The Devil's Dictionary

No structure along m_d axis away from origin

- phase transition line shifted away from axis
- vacuum stabilized by other quarks
- $m_{\pi_0}^2 \sim \frac{m_u + m_d}{2} + O(m_q^2)$

Keeping mass term diagonal, physics remains invariant under

- $M \to e^{i\theta_3\lambda_3 + i\theta_8\lambda_8}M$
- SU(3) has rank 2
- 2 neutral non-strange Goldstone bosons: π_0, η
 - $m_P^2 \sim m_q$

Anomaly: not invariant under U(1) rotation $M \rightarrow e^{i\theta}M$

- rotation changes the strong CP angle
- η' mass of order Λ_{qcd}
 - does not vanish with m_q
 - non-perturbative

Rooted staggered fermions at finite a qualitatively different

- ullet massless state along m_d axis
- blocks continuation to regions with CP violation
- three neutral non-strange Goldstone bosons, not two
- independent symmetry under complex rotation of any quark mass

What are staggered fermions?

• start with naive fermions, γ_{μ} for each hop in direction μ

•
$$\gamma_{\mu}p_{\mu} \to \gamma_{\mu} \frac{\sin(ap_{\mu})}{a}$$

- poles whenever components of momentum are 0 or π/a
 - 16 "doublers"
 - different chiralities since $\frac{d}{dp}\sin(p)|_{p=\pi}=-1$
- exact naive chiral symmetry maintained
 - actually a flavored symmetry of the doublers

In a closed fermion loop

- each factor of γ_{μ} appears an even number of times
 - product proportional to the identity
 - four spinor components of ψ are independent
- ullet exact SU(4) symmetry Karsten and Smit (1981)

I like nonsense, it wakes up the brain cells. Fantasy is a necessary ingredient in living, It's a way of looking at life through the wrong end of a telescope. Which is what I do, And that enables you to laugh at life's realities. -- Dr. Seuss

Staggered fermions project out one component per site $\psi \to P\psi$

$$P = \frac{1}{4} \left(1 + i\gamma_1 \gamma_2 (-1)^{x_1 + x_2} + i\gamma_3 \gamma_4 (-1)^{x_3 + x_4} + \gamma_5 (-1)^{x_1 + x_2 + x_3 + x_4} \right)$$

- reduces 16 doublers to 4
- still have exact chiral symmetry $m \to e^{i\theta\gamma_5} m$
- OK: still a flavored symmetry among the doublers

Beware of hidden tastes

The root of all evil

- replace fermion determinant |D| with $|D|^{1/4}$
- hope to reduce effect of four doublers to one
 - BUT: maintains the exact U(1) chiral symmetry

C Cathy Weber

Three flavor QCD

- use rooting for each flavor
- exact U(1) chiral symmetry for each flavor
- three commuting symmetries
- three neutral Goldstone bosons, not two
- incorrect theta dependence

Technical essence

't Hooft vertex

- N_f flavors give $2N_f$ -fermion effective interaction
 - non-perturbative
 - related to gauge field topology
 - represents the anomaly
- 4 flavors: an octa-linear interaction $\sim (\overline{\psi}\psi)^4$
 - chiral symmetry OK since two tastes of each chirality
- 1 flavor: bi-linear interaction $\sim \overline{\psi} \psi$
 - effective mass shift
 - breaks all chiral symmetry

Rooting cannot generate the correct vertex

forbidden by the exact symmetry

Proposed "escape"

- unrooted theory 4 "tastes" per flavor
 - 12 quarks overall
 - 144 pseudoscalar mesons
 - 48 neutral, non-strange
- at finite a these might survive rooting

Conjecture:

- the extra states cancel in continuum limit
 - including the extra Goldstone boson
- theta recovered by reweighting
 - use overlap for topology

Consider composite propagator $\langle \overline{u}\gamma_5 u(x) \quad \overline{u}\gamma_5 u(y) \rangle$

- couples to all 48 neutral non-strange mesons
- expect 48 poles
 - including the extra Goldstone boson
- rooting might give some negative residues
 - conjecture 45 poles cancel
- only π_0 , η , η' should survive

The proposed rooting route

A symmetry for any finite a that disappears for a = 0?

• usually we want to restore symmetries as $a \rightarrow 0$

Not unitary:

some production cross sections must be negative

Not local at finite *a*:

extra Goldstone boson

Unproven

- "trust us"
- intelligent design?

Issues absent with Wilson, domain wall, overlap

Even if OK, 3 << 48: huge lattice artifacts expected in singlet sector

"Ugly?" "Absurd?" "Obscene?"

Ginseng on a billboard in Shanghai

Maybe a movie?

